Using a Delta table as a streaming source

As data is added to this source from a stream, the data frame is dynamically updated.

💡
Only Append operations can be used to update the underlying table.
from pyspark.sql.types import *
from pyspark.sql.functions import *

# Load a streaming dataframe from the Delta Table
stream_df = spark.readStream.format("delta") \
    .option("ignoreChanges", "true") \
    .load("Files/delta/internetorders")

# Now you can process the streaming data in the dataframe
# for example, show it:
stream_df.show()

Using a Delta table as a streaming sink

from pyspark.sql.types import *
from pyspark.sql.functions import *

# Load a streaming dataframe from the Delta Table
stream_df = spark.readStream.format("delta") \
    .option("ignoreChanges", "true") \
    .load("Files/delta/internetorders")

# Now you can process the streaming data in the dataframe
# for example, show it:
stream_df.show()

Query the table data is streamed into

%%sql

CREATE TABLE DeviceTable
USING DELTA
LOCATION 'Files/delta/devicetable';

SELECT device, status
FROM DeviceTable;

Stop the stream

delta_stream.stop()